Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Food ; 24(9): 916-924, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33739872

RESUMO

Epilepsy is one of the most common neurological disorders. About one-third of people with epilepsy are refractory to available treatments. Studies suggest that mechanisms linked to the immune response and inflammatory process are related to seizure disorders. Citral is a monoterpene found in the essential oil of several plants, as in Cymbopogon citratus, used to make teas and has been the subject of numerous researches, from which it has been possible to demonstrate antiseizure and anti-inflammatory activities. In this study, the effects of citral on status epilepticus (SE) induced by the lithium-pilocarpine model in rats were investigated. Quantitative reverse transcription PCR (RT-qPCR) evaluated latency for seizure development, neuronal death in the hippocampus, and expression of the brain-derived neurotrophic factor (BDNF), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin-1ß ( IL-1ß) and factor nuclear kappa B (NF-κB) genes. The results revealed that citral was able to increase latency until the first seizure, decrease neuronal death 2 h after SE and inhibit overexpression of proinflammatory genes.


Assuntos
Pilocarpina , Estado Epiléptico , Monoterpenos Acíclicos , Animais , Fator Neurotrófico Derivado do Encéfalo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Lítio , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/genética
2.
Hippocampus ; 31(2): 122-139, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33037862

RESUMO

Mesial temporal lobe epilepsy (MTLE) is a chronic neurological disorder characterized by the occurrence of seizures, and histopathological abnormalities in the mesial temporal lobe structures, mainly hippocampal sclerosis (HS). We used a multi-omics approach to determine the profile of transcript and protein expression in the dorsal and ventral hippocampal dentate gyrus (DG) and Cornu Ammonis 3 (CA3) in an animal model of MTLE induced by pilocarpine. We performed label-free proteomics and RNAseq from laser-microdissected tissue isolated from pilocarpine-induced Wistar rats. We divided the DG and CA3 into dorsal and ventral areas and analyzed them separately. We performed a data integration analysis and evaluated enriched signaling pathways, as well as the integrated networks generated based on the gene ontology processes. Our results indicate differences in the transcriptomic and proteomic profiles among the DG and the CA3 subfields of the hippocampus. Moreover, our data suggest that epileptogenesis is enhanced in the CA3 region when compared to the DG, with most abnormalities in transcript and protein levels occurring in the CA3. Furthermore, our results show that the epileptogenesis in the pilocarpine model involves predominantly abnormal regulation of excitatory neuronal mechanisms mediated by N-methyl D-aspartate (NMDA) receptors, changes in the serotonin signaling, and neuronal activity controlled by calcium/calmodulin-dependent protein kinase (CaMK) regulation and leucine-rich repeat kinase 2 (LRRK2)/WNT signaling pathways.


Assuntos
Epilepsia do Lobo Temporal , Animais , Epilepsia do Lobo Temporal/patologia , Hipocampo/metabolismo , Pilocarpina/toxicidade , Proteômica , Ratos , Ratos Wistar
3.
MethodsX ; 6: 2156-2165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31667115

RESUMO

Periodontal disease is one of the most common causes of tooth loss in the world. Ligature-induced is the most used method to study periodontitis. Here, we describe a alternative, easy and accessible experimental technique of ligation in mice. Twenty C57BL/6 female mice were divided in two groups, control and ligation. Ligature group (n = 10) was immobilized in a well described stabilization board and ligature was performed at the first molar using a new procedure here described in detail. Eight weeks later animals were euthanized, and periodontitis hallmarks were evaluated. Ligatures remained attached to the teeth in all animal during the hole experiment. The procedure induced a temporary loss of weight but no causalities or tooth loss. The animals affected by ligation in their molar teeth presented all periodontitis hallmarks, including alveolar bone loss, gingival retraction and inflammatory infiltrate in the studied region both macro and microscopically. The alternative method is low cost, easily reproducible, and induces all periodontitis hallmarks that are sustained until 8 weeks after placement. •Ligature-induced periodontitis in mouse is a powerful tool of research.•Methods describing the procedure in literature are difficult to reproduce.•A alternative stabilization and ligation procedure in mice is completely described here.

4.
Dev Dyn ; 239(3): 737-46, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20108352

RESUMO

We have hypothesized that epithelial growth, branching, and canalization in the rodent ventral prostate (VP) would require matrix remodeling, and hence matrix metalloproteinase (MMP) activity. Therefore, the aim of this study was to evaluate the impact of blocking MMP-2, using whole organ culture. siRNA was employed to inhibit MMP-2 expression, and this was compared to GM6001's (a broad-spectrum MMP inhibitor) inhibition of general MMPs. These blocks impaired VP morphogenesis. MMP-2 silencing reduced organ size, epithelial area, and the number of tips, as well as caused a dilation of the distal parts of the epithelium. Histology, 3-D reconstruction, biochemistry, and second harmonic generation (SHG) revealed that MMP-2 silencing affected VP architecture by interfering in epithelial cell proliferation, lumen formation, and cellular organization of both epithelium and stroma, besides intense accumulation of collagen fibers. These data suggest that MMP-2 plays important roles in prostate growth, being directly involved with epithelial morphogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Metaloproteinase 2 da Matriz/biossíntese , Próstata/embriologia , Animais , Proliferação de Células , Colágeno/metabolismo , Epitélio/embriologia , Inativação Gênica , Imageamento Tridimensional , Técnicas In Vitro , Masculino , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
PLoS One ; 4(12): e8472, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20041152

RESUMO

BACKGROUND: The activation of the members of the myocyte enhancer factor-2 family (MEF2A, B, C and D) of transcription factors promotes cardiac hypertrophy and failure. However, the role of its individual components in the pathogenesis of cardiac hypertrophy remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated whether MEF2C plays a role in mediating the left ventricular hypertrophy by pressure overload in mice. The knockdown of myocardial MEF2C induced by specific small interfering RNA (siRNA) has been shown to attenuate hypertrophy, interstitial fibrosis and the rise of ANP levels in aortic banded mice. We detected that the depletion of MEF2C also results in lowered levels of both PGC-1alpha and mitochondrial DNA in the overloaded left ventricle, associated with enhanced AMP:ATP ratio. Additionally, MEF2C depletion was accompanied by defective activation of S6K in response to pressure overload. Treatment with the amino acid leucine stimulated S6K and suppressed the attenuation of left ventricular hypertrophy and fibrosis in the aforementioned aortic banded mice. CONCLUSION/SIGNIFICANCE: These findings represent new evidences that MEF2C depletion attenuates the hypertrophic responses to mechanical stress and highlight the potential of MEF2C to be a target for new therapies to cardiac hypertrophy and failure.


Assuntos
Inativação Gênica , Hipertrofia Ventricular Esquerda/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Regulação Miogênica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , DNA Mitocondrial/genética , Hemodinâmica , Hipertrofia Ventricular Esquerda/fisiopatologia , Fatores de Transcrição MEF2 , Camundongos , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Regulação Miogênica/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Serina-Treonina Quinases TOR , Pressão Ventricular/fisiologia
6.
J Mol Neurosci ; 39(1-2): 69-77, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19191033

RESUMO

One of the putative causative genes for juvenile myoclonic epilepsy (JME) is EFHC1. We report here the expression profile and distribution of Efhc1 messenger RNA (mRNA) during mouse and rat brain development. Real-time polymerase chain reaction revealed that there is no difference in the expression of Efhc1 mRNA between right and left hemispheres in both species. In addition, the highest levels of Efhc1 mRNA were found at intra-uterine stages in mouse and in adulthood in rat. In common, there was a progressive decrease in Efhc1 expression from 1-day-old neonates to 14-day-old animals in both species. In situ hybridization studies showed that rat and mouse Efhc1 mRNAs are expressed in ependymal cells of ventricle walls. Our findings suggest that Efhc1 expression is more important during initial phases of brain development and that at this stage it could be involved in key developmental mechanisms underlying JME.


Assuntos
Encéfalo , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Proteínas de Ligação ao Cálcio/genética , Perfilação da Expressão Gênica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Epilepsia Mioclônica Juvenil/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
7.
Circ Res ; 103(8): 813-24, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18757826

RESUMO

The aim of this study was to investigate whether Shp2 (Src homology region 2, phosphatase 2) controls focal adhesion kinase (FAK) activity and its trophic actions in cardiomyocytes. We show that low phosphorylation levels of FAK in nonstretched neonatal rat ventricular myocytes (NRVMs) coincided with a relatively high basal association of FAK with Shp2 and Shp2 phosphatase activity. Cyclic stretch (15% above initial length) enhanced FAK phosphorylation at Tyr397 and reduced FAK/Shp2 association and phosphatase activity in anti-Shp2 precipitates. Recombinant Shp2 C-terminal protein tyrosine phosphatase domain (Shp2-PTP) interacted with nonphosphorylated recombinant FAK and dephosphorylated FAK immunoprecipitated from NRVMs. Depletion of Shp2 by specific small interfering RNA increased the phosphorylation of FAK Tyr397, Src Tyr418, AKT Ser473, TSC2 Thr1462, and S6 kinase Thr389 and induced hypertrophy of nonstretched NRVMs. Inhibition of FAK/Src activity by PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine} abolished the phosphorylation of AKT, TSC2, and S6 kinase, as well as the hypertrophy of NRVMs induced by Shp2 depletion. Inhibition of mTOR (mammalian target of rapamycin) with rapamycin blunted the hypertrophy in NRVMs depleted of Shp2. NRVMs treated with PP2 or depleted of FAK by specific small interfering RNA were defective in FAK, Src, extracellular signal-regulated kinase, AKT, TSC2, and S6 kinase phosphorylation, as well as in the hypertrophic response to prolonged stretch. The stretch-induced hypertrophy of NRVMs was also prevented by rapamycin. These findings demonstrate that basal Shp2 tyrosine phosphatase activity controls the size of cardiomyocytes by downregulating a pathway that involves FAK/Src and mTOR signaling pathways.


Assuntos
Cardiomegalia/enzimologia , Tamanho Celular , Mecanotransdução Celular , Miócitos Cardíacos/enzimologia , Proteínas Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Quinases da Família src/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/patologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Transfecção , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo , Quinases da Família src/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...